If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16a^2-20a=0
a = 16; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·16·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*16}=\frac{0}{32} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*16}=\frac{40}{32} =1+1/4 $
| 15x=3/2x | | 7x^2-24x=-2x^2+3x | | y-(y*8/100)=133 | | (2x+3)/(4+x)=5 | | y-(y*28/100)=105 | | k+12=-6 | | 130=(2x) | | -6w-6=-60 | | -1=c+-7 | | 32=-6+2c | | 4x-(9x+9)+1=5x-1 | | 4(1/5x-1)=2/3x+17 | | 3=p+-13 | | (5x-6)+(8x+17)=180 | | 4(5x-1)=(6)(6) | | 2*(4-3x)+2x=4x-3*(5x+2) | | (5y-1)^1/3-(3y+8)^1/3=0 | | 5b=27+8 | | X+3x7=62 | | 2(t+3)-3(1-2t)=8t-9 | | 8e+2+9e-8=180 | | 2x-4(x-2)=x+2-(x-2) | | 9x-1=4x=12 | | 6y+34=y-1 | | 6y+34=y1 | | 19x+5=138 | | -2w=-8+7 | | X+16=3z | | 14=4u-8 | | 7x2-13=0 | | x-14=131 | | x2+8=36 |